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Abstract. This report describes the procedure followed for building a reference data set for 
measuring the pertinence of personalization algorithms. The reference data set consists of a set of 
queries, a set of user profiles and the query results that are pertinent for the user. In this way, the 
results obtained with a personalization algorithm can be compared to reference results in order to 
evaluate pertinence of the algorithm.  

1. Introduction 

Data personalization is one of the main solutions to improve relevance of data in information retrieval and 
database systems. Before being executed, user queries are reformulated on the basis of user profile preferences. 
This allows targeting user’s center of interest and thus delivering pertinent results and reducing result size. 

In order to measure the pertinence of results and then measuring the behaviour of personalisation algorithms, we 
need to compare delivered results with those effectively preferred by the user. In other words, we need a 
reference data set that contains several queries and the sets of query results that are pertinent for the user. In this 
way, the results obtained with a personalization algorithm can be compared to reference results in order to 
evaluate the precision and recall of the algorithm. Such a data set also allows the comparison among 
personalization algorithms, regarding pertinence, performance, result size or other measures.  

In this report we describe the construction of a reference dataset for query personalization, which is the first step 
for building a personalization benchmark. There exist several benchmarks among which we can cite the TPC 
benchmarks for database server performances [6] or the TREC benchmarks for information retrieval systems [5]. 
However, as far as we know, there is no benchmark providing a validation framework to query personalization 
algorithms. A benchmark for query personalization should also manage different users and their preferences. 
Specifically, they should provide a large database, a set of user profiles and user queries as well as the reference 
results associated to each profile and query, i.e. they should provide collections of triplets {(profile, query) � 
results}.  

Our dataset is derived from two public databases, i.e. MovieLens [1] and IMDb [2]. Both databases deal with 
data about movies. The IMDb database contains rich information about films, actors, directors, the places where 
they are produced, their budgets, their categories and the average rank given by the users who had evaluated 
them. IMDb describes more than 850.000 movies at the moment we have extracted its data (October 2006). The 
MovieLens database contains very few information about films but provides a huge amount of evaluations given 
by users who have seen these films. MovieLens provides a dataset composed of more than 1 million evaluations 

                                                           
1 This research was partially supported by the French Ministry of Research and New Technologies under the ACI program 
devoted to Data Masses (ACI-MD), project #MD-33. 
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given by 6.040 users on 3.883 films. The two databases are complementary as they almost target the same 
movies (actually the set of films referred in MovieLens is a subset of those referred in IMDb). The main 
advantage of using these databases is that they provide a large volume of data, which is freely available at 
Internet. In addition, cinema data is very easy to understand, use and analyze. However, the join between the two 
databases is not easy to perform as there is not a universal identifier for the contained movies. The only common 
data is the titles of the movies but, unfortunately, they suffer from many problems such as abbreviation, 
translations into different languages and, generally, lack of writing standardization. Locally, each database has 
also many dirty data which needs to be cleaned and homogenized. Finally, the two databases, in particular 
IMDb, are semi-structured databases; their loading into a relational database necessitates several 
transformations. Consequently, using the two databases needs a substantial effort which we have done [4] as this 
kind of benchmark is not only useful for our evaluation but can benefit to a wide database community working 
on query personalization. 

This report describes the procedure followed for building the reference data set from IMDb and MovieLens data. 
Section 2 presents and overview of the approach and a motivating example. Section 3 presents the design of the 
reference data set; specifically, it describes the procedures for generating user profiles based on MovieLens 
users’ ratings, for generating a set of queries over IMDb data, and for obtaining the reference results for each 
pair (query, profile). Auxiliary routines and storage issues are also discussed. Section 4 describes the 
construction of the reference data set, discussing parameterization and execution of the generation procedures 
and presenting results and statistics. Finally, Section 5 concludes and presents future steps in order to complete 
the benchmark for query personalization.  

2. Overview of the approach  

In order to motivate the need of a reference data set, consider the user query of Figure 1, asking for action 
movies posterior to 2000. There is a large set of movies that satisfy query criteria. However, if we consider that 
user prefers French movies played by Jean Reno, the result size reduces considerably by delivering more 
pertinent results. Personalization algorithms take into account the user profile and reformulate the user query by 
including additional filtering criteria. 

However, the results delivered by the personalization algorithm may exclude pertinent results and include non-
pertinent results. Knowing the set of movies that the user effectively prefers, i.e. the set of results that are really 
pertinent, we can compare it with the results proposed by the personalization algorithm and quantitatively 
evaluate the behavior of the algorithm. 

Action movies 
posterior to 2000

Results without 
personalization

Results with 
personalization

Results preferred 
by the user

User
profile

User
query

comparison

Country=France
Actor=Jean Reno

 

Figure 1 – Example of query personalization and comparison of results 
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In the general case, we consider a certain database instance, a user query Qi, a user profile Pj and a 
personalization algorithm Ak. Figure 2 illustrates the query results obtained with and without personalization and 
their comparison with reference results. Specifically: 

− The whole rectangle (grey zone) represents the space of solutions to Qi, i.e. each point represents a tuple 
in the query domain;  

− Ri (outer yellow oval) represents the set of results of Qi obtained using the database query interface, 
without considering user profile; 

− Rij (inner red oval) represents the set of results of Qi that are considered as pertinent by the user having 
profile Pj. Note that Rij is a subset of Ri. 

− R’ ijk (inner green oval) represents the set of results of Qijk, which corresponds to query Qi enriched with 
profile Pj by algorithm Ak. As personalization algorithms add restriction predicates to queries, R’ijk is also 
a subset of Ri. 

Ri

R’ ijk

Rij

Ri

R’ ijk

Rij

 

Figure 2 – Comparison of personalized results with reference results 

The perfect personalization algorithm should returns all pertinent results and exclude all non-pertinent results. In 
other words, Rij and R’ijk should coincide. In practice, some pertinent results are discarded (Rij – R’ijk) and some 
non-pertinent results are returned (R’ijk – Rij). Precision and recall measures indicate such deviations from the 
reference result. 

In order to provide a test platform for personalization algorithms, we need to build: a set of user profiles, a set of 
queries and the reference results for each pair (query, profile). 

In order to generate user profiles, we use movie ratings provided by MovieLens. In fact, instead of asking certain 
users to manually build their profiles and classify query results according to their pertinence, we reuse movie 
ratings already expressed by real users. Specifically, each tuple of the I_UserRatings table of the integrated 
database (illustrated in Figure 3) corresponds to a user evaluation, registering the user identifier, the movie 
identifier, the rating (in a 1-5 star scale) and a timestamp (unused). See [4] for details on the extraction of 
MovieLens data and the feeding of the I_UserRatings table. 

 

Figure 3 – Part of the instance of the I_UserRatings table 
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User profiles are generated by joining the I_UserRatings table with other tables of the integrated database (which 
describe movie features) and extracting the common features of the movies with higher evaluation. These 
common features constitute the user profile. Tables describing movie features were extracted from IMDb 
database. See [4] for details on the extraction of IMDb data and their integration with MovieLens data. 

Actually, we partition the I_UserRatings table in two subsets: 

− Training set, from which user profile is generated, and 

− Test set, which is proposed as source database for performing queries and measuring personalization 
results. 

This partitioning assures that the obtained measures are not biased. Furthermore, considering different 
partitioning strategies we can obtain more precise measures. 

Figure 4 illustrates the partitioning of the set of movies evaluated by user j in training and test sets, highlighting 
the set of preferred movies. User profile is extracted from the preferred portion of the training set. 

test set j

preferred set j

training set j

 
Figure 4 – Extraction of user profiles from the preferred training set 

In order to define user queries, we consider as space of solutions, some of the movies that the user has already 
evaluated (those of the test set), and we generate queries asking for movies that satisfy different criteria 
(predicates on movie features obtained from IMDb). To this end, we join the I_UserRatings table with some 
tables describing movie features and we add some filtering conditions on such features. Both, joining tables and 
filtering conditions are randomly generated. 

As we know the rating of each movie, we can easily build the set of reference results, i.e. those movies in the 
query result that have a good rating. In other words, the grey zone of Figure 2 consists of the tuples of the 
training set of a given user, the yellow zone consists of the tuples that satisfy a certain query and the red zone 
consists of the subset of tuples that have a good rating.  

Next section describes the mechanisms for generating user profiles, user queries and reference results. 

3. Design of the reference database 

The reference database consists in a set of user profiles, a set of user queries and the corresponding “good” 
results for each couple (profile, query). In this section we present the design of the reference database, i.e. we 
describe the procedures for generating user profiles and user queries, the procedures for calculating reference 
results and the database structures for storing user profiles, user queries and reference results. This section only 
describes the design of such procedures; the setting of the appropriate parameters and the obtained results are 
presented in next section. 

3.1. Generation of user profiles 

User profiles are sets of predicates that state user preferences on movie features. Profile predicates have the form 
feature=value, where value ranges in the domain of the movie feature. For example, a certain user may prefer 
movies spoken in French or action movies; which is expressed by the predicates: Language = French, Genre = 
Action.  

In order to extract a user profile from a set of user evaluations, we look for common features of the evaluated 
movies, for example, if most of the movies the user has assigned a great rating are filmed in France, we deduce 
that the user prefers movies filmed in France, and we propose the predicate LocationCountry=France. 
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In this section we describe the generation of a large set of predicates. Query personalization algorithms may 
choose among the generated predicates and build different user profiles. To this end, we associate a weight to 
each extracted predicate, which represents the percentage of the evaluated films that satisfy the predicate. 
Weights allow conforming more or less restrictive user profiles by choosing the predicates with higher weights 
or accepting predicates with lower weights. 

Weighted predicates have the form <table.attribute operator value (weight)> where: table and attribute refer to 
an attribute of a table of the integrated schema (referencing a movie feature), value is an element of the attribute 
domain, operator ∈ {=,<,≤,>,≥} and weight represents the percentage of the evaluated films that satisfy the 
predicate.  

Some examples of weighted predicates are: 

− I_MovieLanguages.language = English (80) 

− I_Countries.continent = Europe (25) 

− I_MovieGenres.genre = Comedy (40) 

− I_MovieYears.year ≥ 2000 (90) 

− I_MovieBusiness.budgetusd ≥ 10.000.000 (60) 

These examples can be interpreted as among the films the user has evaluated, 80% are spoken in English, 25% 
have been filmed in Europe, 40% are comedies, 90% are posterior to year 2000 and 60% have reported more 
than 10 million dollars. 

The generation of predicates consists of three main steps: 

1) Partitioning user evaluations in order to determine training, test and preferred sets 

2) Extracting predicates for the evaluations on the preferred training set 

3) Computing weights for the extracted predicates (eliminating predicates with low weights)    

The following sub-sections describe each step: 

3.1.1. Partitioning of user evaluations  

In order to partition user evaluations, we define a set of conditions (training, test and preferred conditions) that 
allow delimiting the training, test and preferred sets. We test different partitioning strategies, i.e. different ways 
of partitioning user evaluations.  

Training conditions have the form attribute < value, where attribute is a numeric attribute of the I_UserRatings 
table and value is a value of the attribute domain. In order to define conditions, we added five attributes (named 
C1, C2, C3, C4 and C5) to the I_UserRatings table, all of them taking random values between 0 and 9. Test 
conditions are the negations of training conditions, i.e. they have the form attribute ≥ value. Preferred conditions 
have the form I_UserRatings.rating ≥ value, where value is a number between 1 and 5. 

Training, test and preferred sets are defined as views on the I_UserRatings table according to these conditions:  

− TrainingSet:  
 SELECT * FROM I_UserRatings WHERE TrainingConditio n; 

− TestSet:  
 SELECT * FROM I_UserRatings WHERE TestCondition; 

− PreferredSet:  
 SELECT * FROM I_UserRatings WHERE PreferredConditi on; 

Preferred training and preferred test sets are defined as conjunction of the corresponding conditions: 

− PreferredTrainingSet:  
 SELECT * FROM I_UserRatings WHERE TrainingConditio n AND PreferredCondition; 

− PreferredTestSet:  
 SELECT * FROM I_UserRatings WHERE TestCondition AN D PreferredCondition; 

Additional parameters are used in the generation of predicates. They allow generating meaningful predicates, i.e. 
discarding predicates having a small weight (MinWeight threshold) and predicates appearing in too few 
evaluations (MinEval threshold).  
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The Ref_strategies table encloses all these parameters (see Table 1). Each tuple of this table corresponds to a 
different strategy. A strategy id allows identifying strategies. 

3.1.2. Extraction of predicates 

We generate different types of predicates, each one corresponding to a movie feature (e.g. language, country, 
actor or genre). In order to generate predicates for a given feature, we join user evaluations with the table storing 
such feature and we count the movies that correspond to each feature value. For example, if we consider the 
language feature, we count how many movies correspond to English, Spanish, etc. We parameterized the 
features to look for in the Ref_PredicateTypes table (see Table 1). 

We used two algorithms for generating predicates, which consider equality and inequality of values respectively. 
The former computes the number of films ‘having a certain feature value’ and the latter computes the number of 
films ‘having more than a certain feature value’. The approach can be extended with other predicate-extracting 
methods, for example, clustering algorithms. Both algorithms are implemented as PL-SQL procedures; they are 
sketched as follows:  

− Ref_ExtractEqualityPred: This procedure computes the feature values describing evaluated movies and 
counts the number of evaluations corresponding to each feature value. This is done for each user and each 
strategy, storing the computed predicates in a temporal table (Ref_Aux2, described later in Table 1). 

− Ref_ExtractInequalityPred: This procedure computes the feature values describing evaluated movies and 
counts the number of evaluations corresponding to greater values than each feature value. This is done for 
each user and each strategy, also storing the computed predicates in the temporal table (Ref_Aux2). 

Both algorithms discard predicates having a small support, i.e. being present in few tuples. The MinEval 
parameter of the Ref_Strategies table set such threshold. 

An additional procedure is used for discarding predicates corresponding to Null or dummy values (e.g. 
AttributeValue=’_unknown’): 

− Ref_DiscardDummyPred: This procedure eliminates (from the Ref_Aux2 table) the predicates 
corresponding to Null or dummy values. 

The implementation of these procedures is described in Annex 1. 

3.1.3. Computation of predicate weights 

In order to compute predicate weights, we divide the number of user evaluations corresponding to each predicate 
(e.g. the number of evaluated movies having language=’English’) by the total of user evaluations. The former 
value is registered in the Ref_Aux2 table, the latter value has to be computed. We propose 2 PL-SQL procedures 
for computing the total of user evaluations and calculating weights respectively: 

− Ref_CountEvaluations: This procedure computes the number of evaluations in the preferred training set 
for each user and each strategy. It stocks the computed results in a temporal table (Ref_Aux1, described 
later in Table 1).  

− Ref_ComputePredWeights: This procedure computes predicate weights. Basically, it divides the number 
of evaluations corresponding to each predicate (those stored in Ref_Aux2) by the total of evaluations of 
the corresponding user and strategy (those stored in Ref_Aux1). The predicates having low weight 
(according to the MinWeight parameter of the Ref_Strategies table) are discarded. The generated 
predicates are stored in the Ref_Predicates table, which is described in next sub-section. 

The PL-SQL code of these procedures is listed in Annex 1.  

3.1.4. Storage issues 

Table 1 describes the tables used in the generation of predicates.  

Generation parameters are stored in the Ref_Strategies and Ref_PredicateTypes tables. They store partitioning 
strategies and predicate types respectively. A view (Ref_GenerationParameters) computes the Cartesian product 
of strategies and predicate types, i.e. it indicates the combinations of parameters for generating all predicate 
types for all strategies. 
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CREATE OR REPLACE VIEW Ref_GenerationParameters AS 
SELECT  S.strategyid, S.minweight, S.minrating, S.m ineval, 
 S.trainingcondition, P.execid, P.lookupview, P.att ributename,  
 P.function, P.param1, P.param2, P.param3 
FROM  Ref_Strategies S, Ref_PredicateTypes P; 

The temporal tables Ref_Aux1 and Ref_Aux2 store the number of evaluations per user and strategy and the 
generated predicates per user and strategy respectively. Both tables are used for computing predicate weights and 
eliminating the predicates having low weights. The remaining predicates (and their weights) are stored in the 
Ref_Predicates table. 

Table Attributes Constraints 

Ref_Strategies  
Description of 
partitioning strategies  

− StrategyId: Numeric(2) 
− TrainingCondition: String(50) 
− TestCondition: String(50) 
− PreferredCondition: String(10) 
− MinRating: Numeric(1); the threshold of the 

preferred condition  
− MinWeight: Numeric(5,3)  
− MinEval: Numeric(5) 

Primary key: StrategyId 
Not null: StrategyId, MinWeight, 

MinRating, MinEval, 
TrainingCondition, 
TestCondition, 
PreferredCondition 

Ref_PredicateTypes  
Description of 
predicate types  

− PTypeId: Numeric(3) 
− LookupView: String(40); an auxiliary view 

that relates movies with predicate feature 
− TableName: String(40); the table that stores 

the feature 
− AttributeName: String(30); the attribute that 

stores the feature value 
− Function: String(20); the algorithm to be 

used for generating predicates of this type 
− Param1: String(40); extra parameter for such 

function 
− Param2: String(40); extra parameter for such 

function 
− Param3: String(40); extra parameter for such 

function 

Primary key: PTypeId 
Not null: PTypeId, LookupView, 

TableName, AttributeName, 
Function 

Ref_Aux1  
Temporal table used for 
storing the number 
evaluations of each 
user for each strategy 
(in the preferred 
training set)  

− StrategyId: Numeric(2) 
− UserId: Numeric(4) 
− MovieCount: Numeric (5); the number of 

evaluated movies 

Primary key: StrategyId, UserId 
Not null: StrategyId, UserId, 

MovieCount 

Ref_Aux2  
Temporal table used for 
storing predicates for 
each user and each 
strategy (in the 
preferred training set)  

− StrategyId: Numeric(2) 
− PTypeId: Numeric(3) 
− UserId: Numeric(4) 
− AttributeValue: String(256) 
− Operator: String(5) 
− MovieCount: Numeric (5); the number of 

evaluated movies satisfying the predicate 

Primary key: StrategyId, PTypeId, 
UserId, AttributeValue, 
Operator 

Not null: StrategyId, PTypeId, 
UserId, AttributeValue, 
Operator, MovieCount 

Index: StrategyId, UserId 

Ref_Predicates 
Generated predicates 
per user and strategy 

− StrategyId: Numeric(2) 
− PTypeId: Numeric(3) 
− UserId: Numeric(4) 
− TableName: String(40) 
− AttributeName: String(30) 
− AttributeValue: String(256) 
− Operator: String(5) 
− Weight: Numeric 

Primary key: StrategyId, PTypeId, 
UserId, AttributeValue, 
Operator 

Not null: StrategyId, PTypeId, 
UserId, TableName, 
AttributeName, AttributeValue, 
Operator, Weight 

Index: StrategyId, UserId 

Table 1 – Tables used for the generation of profile predicates 
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3.2. Generation of queries 

In order to generate a large set of queries, we proceed as follows: 

− We depart from the query: SELECT I_UserRatings.movieid FROM I_UserRatings 

− We randomly generate a set of predicates and we add them in the WHERE clause 

− We add all tables referenced in predicates to the FROM clause 

− We complete the WHERE clause with the necessary join predicates for relating all tables of the FROM 
clause. We eventually add new tables to the FROM clause if they are necessaries for joining other tables. 

As an example, consider the predicates of Figure 5a. We add them to the WHERE clause of the query (Figure 
5b, in green and italics), and we add predicate tables (I_MovieLanguages, I_Countries and I_MovieGenres) to 
the FROM clause (Figure 5b, in bleu and bold). Figure 5d shows a portion of the database schema containing 
predicate tables. Note that I_MovieLanguages and I_MovieGenres join with I_UserRatings by movieid, but they 
have no common attributes for joining with I_Countries. The last join is carried out using the I_MovieCountries 
table. The added tables and predicates are shown in Figure 5c (in red and italics). 

(a) 
I_MovieLanguages.language = English 
I_Countries.continent = Europe 
I_MovieGenres.genre = Comedy 

(b) 
SELECT  I_UserRatings.movieid 
FROM  I_UserRatings, I_MovieLanguages, 

I_Countries, I_MovieGenres 
WHERE I_MovieLanguages.language = ‘English’ 
AND I_Countries.continent = ‘Europe’ 
AND I_MovieGenres.genre = ‘Comedy’ 

(c) 
SELECT  I_UserRatings.movieid 
FROM  I_UserRatings, I_MovieLanguages, I_Countries, 

I_MovieGenres, I_MovieCountries 
WHERE I_MovieLanguages.language = ‘English’ 
AND I_Countries.continent = ‘Europe’ 
AND I_MovieGenres.genre = ‘Comedy’ 
AND I_MovieGenres.movieid = I_Movies.movieid 
AND I_MovieLanguages.movieid = I_Movies.movieid 
AND I_MovieCountries.movieid = I_Movies.movieid 
AND I_Countries.country = I_MovieCountries.country 
(d) 

I_Countries
Country
Continent
…

I_MovieLanguages
MovieId
Language
LanguageInfo

I_MovieGenres
MovieId
Genre

I_UserRatings
UserId
MovieId
Rating
Timestamp

MovieId

I_MovieCountries
MovieId
Country

Country MovieId

MovieId

 

Figure 5 – Example of query generation 

Starting from a set of predicates, the construction of SQL queries is quite straight-forward. The point is how to 
generate the predicates. In order to carry out such generation, we follow the same approach used for generating 
profile predicates, i.e. we extract common attribute values describing the evaluated movies of each user.  

However, the generation process has some important differences: (i) we consider all user evaluations, not only 
those having high ratings, (ii) we also extract predicates having low weights, and (iii) we randomly choose a 
small number of predicates. These differences allow generating queries that considerably differentiate from user 
profiles. Concretely, while user profiles contain all high-weight predicates, queries contain few randomly chosen 
predicates, which rarely represent user preferences. In addition, movie features that are irrelevant for users may 
be chosen for query predicates. These three differences also allow the generation of typical queries but returning 
result sets of varied sizes. Specifically, the selection of a small number of predicates (from 1 to 5) avoids 
generating monster queries that returns no data. However, the randomness of the selection allows obtaining 
result sets of different sizes, ranging from almost empty sets when queries have several restrictive predicates (of 
low weight) to almost all data when queries have few non-restrictive predicates (of high weight). 

Sub-section 3.2.1 describes the generation of query predicates and Sub-section 3.2.2 describes the construction 
of SQL queries. 
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3.2.1. Extraction of query predicates 

The extraction of query predicates follows the same procedures explained for extracting profile predicates (see 
Sub-section 3.1). Actually, we define a special strategy (with StrategyId=0) that defines the preferred training set 
as containing all user evaluations. Then, we generate one query per user. 

Among the generated predicates, we randomly select a small number of predicates (between 1 and 5). This is 
carried out by 4 algorithms, implemented as PL-SQL procedures: 

− Ref_SetQueryPredNumber: This procedure randomly set a desired number of predicates (between 1 and 
5) for each query. It stocks the computed results in a temporal table (Ref_AuxQ1).  

− Ref_SetPredRandomWeight: This procedure computes candidate predicates for each query and assigns a 
random weight to each predicate. Candidate predicates are taken from the Ref_Predicates table, selecting 
the strategy 0. The random weights will be used later for selecting a small number of predicates per query 
(according to the desired number of predicates stored in the Ref_AuxQ1 table). The procedure stocks the 
generated predicates in a temporal table (Ref_AuxQ2). 

− Ref_SelectQueryPred: This procedure selects, among the candidate predicates of each query (stored in the 
Ref_AuxQ2 table), the ones having higher random weight. The number of predicates to select is taken 
from the Ref_AuxQ1 table. A sub-procedure (Ref_SelectQueryPred_aux) is used for carrying out the 
selection for each query. The selected predicates are stored in a temporal table (Ref_AuxQ3). 

− Ref_DeleteQueryConflictivePred: This procedure eliminates the conflictive predicates of the Ref_AuxQ3 
table, i.e. when several predicates reference a same attribute (e.g. language=’English’ and 
language=’Spanish’), the one having a higher random weight is kept. To this end, the procedure first 
computes the maximum random weight for each attribute (which are stored in the Ref_AuxQ4 temporal 
table) and then, proceeds to the selection. The obtained predicates are stored in the Ref_QueryPredicates 
table. 

The PL-SQL code of these procedures is listed in Annex 2. The table that stores the generated predicates as well 
as the temporal tables used in the generation are described in Table 2. 

 

Table Attributes Constraints 
Ref_AuxQ1 Temporal table 
used for storing the number 
of predicates to select per 
query 

− QueryId: Numeric(4) 
− PredNumber: Numeric(2); the number of 

predicates to select 

Primary key: QueryId 
Not null: QueryId, PredNumber 

Ref_AuxQ2  
Temporal table used for 
storing candidate 
predicates per query (with 
random weights)  

− PTypeId : Numeric (3) 
− QueryId: Numeric (4) 
− TableName: String(40) 
− AttributeName: String(30) 
− AttributeValue: String(256) 
− Operator: String(5) 
− Weight: Numeric  
− Rnd : Numeric; random weight used for 

random selection  

Primary key: PTypeId, QueryId, 
AttributeValue, Operator 

Not null: PTypeId, QueryId, 
TableName, AttributeName, 
AttributeValue, Operator, 
Weight, Rnd 

Index: QueryId 

Ref_AuxQ3  
Temporal table used for 
storing randomly selected 
predicates per query  

− PTypeId : Numeric (3) 
− QueryId: Numeric (4) 
− TableName: String(40) 
− AttributeName: String(30) 
− AttributeValue: String(256) 
− Operator: String(5) 
− Weight: Numeric  
− Rnd : Numeric; random weight used for 

random selection  

Primary key: PTypeId, QueryId, 
AttributeValue, Operator 

Not null: PTypeId, QueryId, 
TableName, AttributeName, 
AttributeValue, Operator, 
Weight, Rnd 

Index: QueryId 
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Ref_AuxQ4  
Temporal table used for 
storing the maximum 
random weight for 
conflictive predicates (those 
referencing a same 
attribute)  

− PTypeId : Numeric (3) 
− QueryId: Numeric (4) 
− Rnd : Numeric; random weight  

Primary key: PTypeId, QueryId 
Not null: PTypeId, QueryId, Rnd 

Ref_QueryPredicates  
Generated predicates per 
query  

− PTypeId : Numeric (3) 
− QueryId: Numeric (4) 
− TableName: String(40) 
− AttributeName: String(30) 
− AttributeValue: String(256) 
− Operator: String(5)  

Primary key: PTypeId, QueryId 
Not null: PTypeId, QueryId, 

TableName, AttributeName, 
AttributeValue, Operator 

Table 2 – Tables used for the generation of query predicates 

3.2.2. Construction of SQL queries 

As previously explained, we depart from a query selecting movie ids (SELECT I_UserRatings.movieid FROM 
I_UserRatings), we add query predicates to the WHERE clause and we add predicate tables to the FROM clause. 
In addition, we add extra conditions to the WHERE join in order to join predicate tables to the I_UserRatings 
table, possibly adding transitive tables to the FROM clause. 

Each type of predicate determines the join conditions and extra tables necessaries for the join, which are derived 
from the database schema. They are stored in 2 tables (Ref_PTypeJoinConditions and Ref_PTypeJoinTables), 
which are described in Table 3. 

The procedures for generating SQL queries from those tables are implemented in Java. The obtained queries are 
stored in the Ref_Queries table, also described in Table 3. 

Table Attributes Constraints 

Ref_PTypeJoinConditions 
Generated predicates per 
query  

− PTypeId : Numeric (3) 
− LookupView: String(40) 
− AttributeName: String(30) 
− JoinCondition: String(40) 

Primary key: PTypeId, 
JoinCondition 

Not null: PTypeId, TableName, 
AttributeName, JoinCondition 

Ref_PTypeJoinTables 
Generated predicates per 
query  

− PTypeId : Numeric (3) 
− LookupView: String(40) 
− AttributeName: String(30) 
− JoinTable: String(40) 

Primary key: PTypeId, JoinTable 
Not null: PTypeId, TableName, 

AttributeName, JoinTable 

Ref_Queries  
Reference queries  

− QueryId: Numeric (4) 
− QueryText: String(2000) 
− RelationsNumber: Numeric(2); the 

number of tables in the where clause 

Primary key: QueryId 
Not null: QueryId, QueryText 

Table 3 – Tables used in the generation of SQL queries 

3.3. Computation of Reference Results 

Given a query Q, a user U and a strategy S, the query should be executed on the user test set corresponding to the 
strategy. The test set is computed as a view on user evaluations, as follows: 

− TestSet: SELECT * FROM I_UserRatings WHERE TestCondition AND  userid=U  

Replacing the I_UserRatings table by this view, corresponds to add the test condition and the condition on user 
id to query expression. For example, the query 

SELECT I_UserRatings.movieid  
FROM I_UserRatings, I_MovieCountries 
WHERE I_UserRatings.movieid = I_MovieCountries.movi eid 
AND   I_MovieCountries.country = ‘France’ 
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is unfolded to: 

SELECT I_UserRatings.movieid  
FROM I_UserRatings, I_MovieCountries 
WHERE I_UserRatings.movieid = I_MovieCountries.movi eid 
AND   I_MovieCountries.country = ‘France’ 
AND   TestCondition AND userid=U; 

The reference results are computed in the same way, also adding the preferred condition to the query.  

Next section describes the execution of the procedures and the analysis of the obtained results. 

4. Construction of the Reference Database 

In this section we describe the results and statistics obtained from the execution of the previously described 
procedures, i.e. those for generating user profiles and user queries. We firstly describe the setting of strategies 
and the selection of relevant movie features. Then, we present the number of extracted predicates, analyzed by 
several factors and the number of generated queries, also analyzed by several factors. Finally, we present 
statistics on result sizes for pairs <query, profile>. 

4.1. Setting of strategy parameters 

As previously argued, we aim at generating different partitioning strategies in order to obtain unbiased 
experimental results.  

In order to set appropriate partitioning sizes we tested different parameters. Firstly, five random attributes were 
added to the I_UserRatings table (namely, C1, C2, C3, C4 and C5), each one ramdomly filled with an integer 
between 0 and 9. Therefore, training conditions were expressed in the form Ci < N, 1 ≤ i ≤ 5, 0 ≤ N ≤ 9. We 
defined two training sizes, with 50% of tuples (i.e. Ci < 5) and 30% of tuples (i.e. Ci < 3) respectively. Secondly, 
we defined three preferred set sizes, with rating ≥ 3, rating ≥ 4 and rating ≥ 5 respectively. This leads to 6 
combinations of parameters. 

Table 4 shows the average number of ratings in the preferred training set for each type of strategy and Table 5 
shows the average number of ratings in the preferred training set per user and type of strategy. 

Training size All ratings Rating ≥ 3 Rating ≥ 4 Rating ≥ 5 
100 % 1.000.194 836.464 575.272 226.307 
50 % 500.217 418.294 287.788 113.189 
30 % 299.825 250.627 172.594 67.804 

Table 4 – Average number of ratings in the preferred training set per type of strategy 

Training size All ratings Rating ≥ 3 Rating ≥ 4 Rating ≥ 5 
100 % 166 138 95 37 
50 % 83 69 48 19 
30 % 50 42 29 11 

Table 5 –Average number of ratings in the preferred training set per user and type of strategy 

Note that the number of ratings in the preferred training set is too small when considering rating ≥ 5. So, we did 
not consider such setting. We kept a total of 21 strategies, which are shown in Table 6; strategy 0 is used later for 
query generation; the remaining strategies are packed by 5, for 1 ≤ i ≤ 5.  

Strategy id Training condition Test condition Preferred condition 
0 Ci < 10  Rating ≥ 0 

1-5 Ci < 5 Ci ≥ 5 Rating ≥ 3 
6-10 Ci < 5 Ci ≥ 5 Rating ≥ 4 
11-15 Ci < 3 Ci ≥ 3 Rating ≥ 3 
16-20 Ci < 3 Ci ≥ 3 Rating ≥ 4 

Table 6 – Parameters of strategies 
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Further parameters are the minimum weight (MinWeight) and the minimum number of evaluations (MinEval) 
were set to 10 and 5 respectively for all strategies. We preferred generating a great number of predicates even 
having low weights because they can be filtered thereafter. 

4.2. Set of predicate types 

We considered a set of 35 attributes containing relevant movie features, which are listed in Table 7. Some of 
them were implemented (those needing an equality or inequality comparison function), the remaining ones 
(which are shadowed) were kept as future work. 

NºAtt Table Attribute  Comparison function 
2 I_MovieGenres                 genre                equality 
3 I_MovieCountries              country              equality 
4 IV_MovieCountries             continent            equality 
5 I_MovieYears                  year                 equality 
6 IV_MovieYears                 decade               equality 
7 I_MovieYears                  year clustering 
8 I_MovieRatings                rating               equality 
9 I_MovieRatings                rating inequality 
10 I_MovieRatings                votes inequality 
11 I_MovieKeywords               keyword              equality 
12 I_MovieLanguages              language             equality 
13 I_MovieProductionCompanies    companyname          equality 
14 IV_MovieProductionCompanies country              equality 
15 IV_MovieProductionCompanies continent            equality 
16 I_MovieProductionCompanies    companyname reconciliation 
17 I_MovieColors                 color                equality 
18 I_MovieSounds                 soundmix             equality 
19 I_MovieSounds                 soundmix reconciliation 
20 I_MovieBusiness budgetusd inequality 
21 I_MovieBusiness revenueusd inequality 
22 I_MovieLocations              zone                 equality 
23 IV_MovieLocations             country              equality 
24 IV_MovieLocations             continent            equality 
25 I_MovieRunningTimes           country              equality 
26 IV_MovieRunningTimes          continent            equality 
27 I_MovieRunningTimes           durationinterval equality 
28 I_MovieRunningTimes           duration clustering 
29 I_MovieDirectors              director             equality 
30 I_MovieWriters                writer               equality 
31 I_MovieProducers              producer             equality 
32 I_MovieCostumeDesigners       costumedesigner      equality 
33 I_MovieProductionDesigners    productiondesigner equality 
34 I_MovieActresses              actress              equality 
35 I_MovieActors                 actor                equality 
36 I_MovieLinks                  linktype             equality 

Table 7 – Candidate attributes describing movie features 

4.3. Obtained profile predicates 

Having defined strategy parameters and types of predicates, we proceeded to execute the profile generation 
procedures described in Sub-section 3.1. We obtained 8.779.207 predicates for all users and all strategies. The 
following figures analyze the number of obtained predicates per strategy, weight, user and attribute. 
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Figure 6 shows the number of predicates extracted for each strategy. As expected, the number of predicates 
decreases for more restrictive strategies.  
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Figure 6 – Average number of predicates per type of strategy  

Figure 7 also considers predicate weights; it shows the number of predicates having a weight greater or equal to 
a given value. Note that the distribution is similar for all types of strategies. 
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Figure 7 – Cumulative number of predicates by weights 

Figures 8, 9, 10 and 11 incorporate a new dimension: the number of users having a certain profile size. By 
profile size we mean the number of predicates generated for the user. Figure 8 shows that the number of 
predicates generated for each user varies largely, from 1 to more than 160. As special cases, we note that there is 
nearly a hundred users having a small number of predicates (close to 20) and nearly a hundred users having close 
to 80 predicates. This distribution is very different when only considering weights greater or equal to 30 (Figure 
9) or 50 (Figure 10). In the former, most users have profile sizes between 20 and 30 predicates, and in the latter, 
most users have profile sizes between 15 and 20 predicates. Figure 11 illustrates the case of predicate weights 
greater or equal to 90. In this case, all users have a few number of predicates. Note that in all figures, the 
distributions are quite independent of the type of strategy.  
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Number of users by number of predicates (w=10)
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Figure 8 – Number of users having a certain profile size (with predicate weight ≥≥≥≥10)  
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Figure 9 – Number of users having a certain profile size (with predicate weight ≥≥≥≥30)  
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Figure 10 – Number of users having a certain profile size (with predicate weight ≥≥≥≥50)  
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Number of users by number of predicates (w=90)

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of predicates

N
um

be
r o

f u
se

rs

1-5

6-10

11-15

16-20

 

Figure 11 – Number of users having a certain profile size (with predicate weight ≥≥≥≥90)  

Finally, Figure 12 shows the number of predicates per type of predicate, highlighting the most generated 
predicates concerns keywords (type 11), IMDb global rating (type 9), genre (type 1) and link type (type 36). 
Conversely, there are too few predicates concerning running year (type 8), and casting (types 29 to 35).  
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Figure 12 – Number of predicates per type (for all strategies)  

4.4. Obtained queries 

After generating user profiles, we proceeded to execute the query generation procedures. We firstly generated 
query predicates, using the same procedures than for profile generation, but fixing the strategy 0 (special strategy 
that extracts predicates from the whole set of ratings). Therefore, we obtained 6040 queries, one per user. We 
obtained an initial set of 622.061 predicates for all queries, from which we randomly selected 18.142. We kept 
15.996 predicates after eliminating contradictory ones. The following figures show the number of predicates of 
each query at each generation stage.  

Figure 13 shows the number of queries having a certain number of generated predicates. Note that most queries 
have between 80 and 130 predicates but there are some queries with an enormous number of predicates. In all 
cases, the random selection of a small number of predicates assures that the query does not represent the user 
profile.   
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Histograme of queries by number of predicates
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Figure 13 – Number of queries having a certain number of predicates (initial generation) 

Figure 14 also shows the number of queries having a certain number of predicates, but after random selection 
and after elimination of contradictory predicates. The former is quite uniformly distributed but in the latter, there 
are less queries having 4 and 5 predicates (because they contained more contradictory predicates).  
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Figure 14 – Number of queries having a certain number of predicates ( ���� after random selection and ���� after elimination of 

contradictory predicates) 

After fixing query predicates, the algorithm presented in Sub-section 3.2.2 was executed in order to generate 
SQL queries. Finally, we added a special query, with query id = 0, that has no predicates. 

4.5. Execution of queries  

After generating queries, we executed them over the several test sets (for all users and all strategies) and we 
measured the size of the obtained results. The following figures illustrate this fact for one particular strategy. 

Figure 15 shows the number of queries having at least a certain result size. By result size we mean the number of 
tuples returned by the query. We took two measures: the average of result sizes for all users, and the maximum 
result size for a user (the user for whom the query returns the most of results). Note that most queries returns less 
than 20 tuples in average but they return more results for some users. 
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Cumulative number of queries by result size (strate gy 11)
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Figure 15 – Number of queries having a certain result size or greater 

Figure 16 shows the number of users for whom we obtained at least a certain result size. We also took two 
measures: the average of result sizes for all queries, and the maximum result size for a query (the query that 
returns the larger result for the user). Note that most users receive less than 20 tuples in average but they receive 
more results for some queries. 
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Figure 16 – Number of users for whom we obtained a certain result size or greater 

Result sizes are larger for strategies 1 to 10 and smaller for strategies 16 to 20, but distributions of previous 
figures are conserved. 

5. Conclusion 

In this report we described the procedure followed for generating a reference data set for query personalization. 
Specifically, we described the generation of user profiles, the generation of queries and the computation of 
reference results. We also executed those procedures and showed statistics on the obtained profile predicates, 
query predicates and result sizes. 

This reference data set is large enough to support the definition of several personalization benchmarks, either by 
limiting the number of predicates in each user profiles or by selecting subsets of users or queries. A first 
benchmark built over this reference data set is described in [3]. 
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As future work, we aim at considering communities of users having similar profiles and defining community 
profiles. The queries of the data set may be executed on the test set of a community (the union of the test sets of 
all users in the community) obtaining queries with larger result sizes. Additional tests may compare the results 
obtained with the user profile with the results obtained with the community result.  
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7. Annexes 

7.1. Annex 1 – Procedures for generating profile predicates 

Ref_ProfileGeneration 

CREATE OR REPLACE PROCEDURE Ref_ProfileGeneration 
  
AS 
BEGIN 
 
 DELETE from Ref_Aux1; 
 COMMIT; 
 
 DELETE from Ref_Aux2; 
 COMMIT; 
 
 DELETE from Ref_Predicates; 
 COMMIT; 
 
 Ref_ExtractEqualityPred; 
 Ref_ExtractInequalityPred; 
 Ref_DiscardDummyPred; 
 Ref_CountEvaluations; 
 Ref_ComputePredWeights; 
 
 COMMIT; 
 
END Ref_ProfileGeneration; 
/ 
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Ref_ExtractEqualityPred 

CREATE OR REPLACE PROCEDURE Ref_ExtractEqualityPred  
 
AS  
 stmt VARCHAR2(5000); 
 
 parameters Ref_GenerationParameters%rowtype; 
 
 CURSOR cursor_parameters is  
  SELECT  *  
  FROM  Ref_GenerationParameters 
  WHERE function = 'Equality'; 
 
BEGIN  
 
 FOR parameters IN cursor_parameters LOOP 
 
  stmt:= 'INSERT INTO Ref_Aux2 (  
   SELECT  ' || parameters.strategyid || ',' || 
    parameters.ptypeid ||',  
    U.userid,  
    T.' || parameters.attributename || ',  
    =, 
    count(distinct U.movieid) 
   FROM  I_USERRATINGS U, ' || parameters.lookupvie w || ' T 
   WHERE  T.movieid = U.movieid 
   AND U.rating >= ' || parameters.minrating || '  
   AND U.' || parameters.trainingcondition || ' 
   GROUP BY U.userid, T.' || parameters.attributena me || ' 
   HAVING count(distinct U.movieid) >= ' || paramet ers.mineval || ' 
  )'; 
 
  EXECUTE IMMEDIATE stmt; 
 
  COMMIT; 
 
 END LOOP; 
 
END Ref_ExtractEqualityPred; 
/ 
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Ref_ExtractInequalityPred 

CREATE OR REPLACE PROCEDURE Ref_ExtractInequalityPr ed 
 
AS  
 stmt VARCHAR2(5000); 
 
 parameters Ref_GenerationParameters%rowtype; 
 
 CURSOR cursor_parameters is  
  SELECT  *  
  FROM  Ref_GenerationParameters 
  WHERE function = 'Inequality'; 
 
BEGIN  
 
 FOR parameters IN cursor_parameters LOOP 
 
  stmt:= 'INSERT INTO Ref_Aux2 (  
   SELECT  ' || parameters.strategyid || ',' || 
    parameters.ptypeid ||',  
    U.userid,  
    P.' || parameters.attributename || ',  
    >=, 
    count(distinct U.movieid) 
   FROM  I_USERRATINGS U, ' || parameters.lookupvie w || ' T, ' || 
    parameters.param1 || ' P 
   WHERE  U.movieid = T.movieid 
   AND T.' || parameters.attributename || ' >=  
    P.' || parameters.attributename || ' 
   AND U.rating >= ' || parameters.minrating || '  
   AND U.' || parameters.trainingcondition || ' 
   GROUP BY U.userid, P.' || parameters.attributena me || ' 
   HAVING count(distinct U.movieid) >= ' || paramet ers.mineval || ' 
  )'; 
 
  EXECUTE IMMEDIATE stmt; 
 
  COMMIT; 
 
 END LOOP; 
 
END Ref_ExtractInequalityPred; 
/ 

Ref_DiscardDummyPred 

CREATE OR REPLACE PROCEDURE Ref_DiscardDummyPred 
  
AS 
BEGIN 
 
 DELETE FROM Ref_Aux2  
 WHERE attributevalue = 'NULL'; 
 
 DELETE FROM Ref_Aux2  
 WHERE attributevalue = '_unknown'; 
 
 DELETE FROM Ref_Aux2  
 WHERE attributevalue = '_multiple'; 
 
 COMMIT; 
 
END Ref_DiscardDummyPred; 
/ 
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Ref_CountEvaluations 

CREATE OR REPLACE PROCEDURE Ref_CountEvaluations 
 
AS 
 stmt varchar2(5000); 
 
 parameters Ref_Strategies%rowtype; 
 
 CURSOR cursor_parameters is  
  SELECT * 
  FROM Ref_Strategies; 
 
BEGIN  
 
 FOR parameters IN cursor_parameters LOOP 
 
  stmt:= 'INSERT INTO Ref_Aux1 (  
   SELECT  ' || parameters.strategyid || ',  
    U.userid,  
    count(*) 
   FROM  I_UserRatings U 
   WHERE  U.rating >= ' || parameters.minrating || ' 
   AND U.' || parameters.trainingcondition || ' 
   GROUP BY U.userid 
  )'; 
 
  EXECUTE IMMEDIATE stmt; 
 
  COMMIT; 
 
 END LOOP; 
 
END Ref_CountEvaluations; 
/ 

Ref_ComputePredWeights 

CREATE OR REPLACE PROCEDURE Ref_ComputePredWeights 
  
AS 
BEGIN 
 
 INSERT INTO Ref_Predicates ( 
 SELECT  X1.strategyid,  
  X2.ptypeid,  
  X1.userid,  
  A.tablename,  
  A.attributename, 
         to_char(X2.attributevalue),  
  X2.operator,  
  (X2.moviecount/X1.moviecount)*100  
 FROM  Ref_Aux2 X2, Ref_Aux1 X1, Ref_PredicateTypes  A, Ref_Strategies S 
 WHERE  X2.strategyid = X1.strategyid 
 AND    X2.userid = X1.userid 
 AND    X2.ptypeid = A.ptypeid 
 AND    X1.strategyid = S.strategyid 
 AND  (X2.moviecount/X1.moviecount)*100 >= S.minwei ght 
 ); 
 
 COMMIT; 
 
END Ref_ComputePredWeights; 
/ 
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7.2. Annex 2 – Procedures for generating query predicates 

Ref_QueryGeneration 

CREATE OR REPLACE PROCEDURE Ref_QueryGeneration 
  
AS 
BEGIN 
 
 DELETE from Ref_AuxQ1; 
 COMMIT; 
 
 DELETE from Ref_AuxQ2; 
 COMMIT; 
 
 DELETE from Ref_AuxQ3; 
 COMMIT; 
 
 DELETE from Ref_AuxQ4; 
 COMMIT; 
 
 DELETE from Ref_QueryPredicates; 
 COMMIT; 
 
 Ref_SetQueryPredNumber; 
 Ref_SetPredRandomWeight; 
 Ref_SelectQueryPred; 
 Ref_DeleteQueryConflictivePred; 
 
 COMMIT; 
 
END Ref_QueryGeneration; 
/ 

Ref_SetQueryPredNumber 

CREATE OR REPLACE PROCEDURE Ref_SetQueryPredNumber 
  
AS 
BEGIN 
 
 random.rndinit(); 
 
 INSERT INTO Ref_AuxQ1 ( 
 SELECT U.userid, random.rndint(5)+1 
 FROM I_UserRatings U 
 GROUP BY U.userid 
 ); 
 
 COMMIT; 
 
END Ref_SetQueryPredNumber; 
/ 
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Ref_SetPredRandomWeight 

CREATE OR REPLACE PROCEDURE Ref_SetPredRandomWeight  
  
AS 
BEGIN 
 
 random.rndinit(); 
 
 INSERT INTO Ref_AuxQ2 ( 
 SELECT  X.ptypeid,  
  X.userid,  
  X.tablename,  
  X.attributename, 
         X.attributevalue,  
         X.operator,  
  X.weight, 
  random.rndflt() 
 FROM  Ref_Predicates X 
 WHERE X.strategyid=0 
 ); 
 
 COMMIT; 
 
END Ref_SetPredRandomWeight; 
/ 

Ref_SelectQueryPred 

CREATE OR REPLACE PROCEDURE Ref_SelectQueryPred 
  
AS 
 
 preds Test_RuleNumber%rowtype; 
 
 CURSOR cursor_preds is  
  SELECT  *  
  FROM  Ref_AuxQ1; 
 
BEGIN 
 
 FOR preds IN cursor_preds LOOP 
 
  Ref_SelectQueryPred_aux (preds.queryid, preds.pre dnumber); 
 
 END LOOP; 
 
END Ref_SelectQueryPred; 
/ 
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Ref_SelectQueryPred_aux 

CREATE OR REPLACE PROCEDURE Ref_SelectQueryPred_aux ( 
 query in NUMBER, 
 predcount in NUMBER)  
  
AS 
 
 i NUMBER; 
 
 rules Ref_AuxQ2%rowtype; 
 
 CURSOR cursor_rules is  
  SELECT  *  
  FROM  Ref_AuxQ2 T 
  WHERE T.queryid = query 
  ORDER BY T.rnd DESC; 
 
BEGIN 
 
 i:=0; 
 
 OPEN cursor_rules; 
  
 WHILE i < predcount LOOP 
 
  FETCH cursor_rules into  
   rules.ptypeid,  
   rules.queryid,  
   rules.tablename,  
   rules.attributename, 
          rules.attributevalue,  
   rules.operator,  
   rules.weight, 
   rules.rnd; 
  EXIT WHEN cursor_rules%notfound; 
 
  INSERT INTO Ref_AuxQ3 VALUES ( 
   rules.ptypeid,  
   rules.queryid,  
   rules.tablename,  
   rules.attributename, 
          rules.attributevalue,  
   rules.operator,  
   rules.weight, 
   rules.rnd 
  ); 
 
  i:= i+1; 
  
 END LOOP; 
 CLOSE cursor_rules; 
 
 COMMIT; 
 
END Ref_SelectQueryPred_aux; 
/ 
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Ref_DeleteQueryConflictivePred 

CREATE OR REPLACE PROCEDURE Ref_DeleteQueryConflict ivePred 
  
AS 
 
BEGIN 
 
 INSERT INTO Ref_AuxQ4 ( 
 SELECT  ptypeid, queryid, max(rnd)  
 FROM  Ref_AuxQ3 
 GROUP BY ptypeid, queryid 
 ); 
 
 INSERT INTO Ref_QueryPredicates ( 
 SELECT  X.ptypeid, X.queryid, X.tablename, X.attri butename, 
         X.attributevalue, X.operator  
 FROM  Ref_AuxQ3 X, Ref_AuxQ4 Y 
 WHERE X.ptypeid = Y.ptypeid 
 AND    X.queryid = Y.queryid 
 AND    X.rnd = Y.rnd 
 ); 
 
 COMMIT; 
 
END Ref_DeleteQueryConflictivePred; 
/ 
 
 

 

 


