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Abstract. This report describes the procedure followed foildng a reference data set for
measuring the pertinence of personalization algorét The reference data set consists of a set of
queries, a set of user profiles and the query t®slét are pertinent for the user. In this wag, th
results obtained with a personalization algoritran be compared to reference results in order to
evaluate pertinence of the algorithm.

1. Introduction

Data personalization is one of the main solutiamsniprove relevance of data in information retriesad
database systems. Before being executed, useequae reformulated on the basis of user profisdepences.
This allows targeting user’s center of interest #me delivering pertinent results and reducingltesze.

In order to measure the pertinence of results had measuring the behaviour of personalisationrighgos, we
need to compare delivered results with those éffelgt preferred by the user. In other words, we chee
reference data set that contains several quergeshansets of query results that are pertinentHferuser. In this
way, the results obtained with a personalizatiggp@thm can be compared to reference results irotad
evaluate the precision and recall of the algoritfBuch a data set also allows the comparison among
personalization algorithms, regarding pertinenegfggmance, result size or other measures.

In this report we describe the construction offanence dataset for query personalization, whidhaesfirst step
for building a personalization benchmark. Thereseseveral benchmarks among which we can cite B@ T
benchmarks for database server performances fBeoFREC benchmarks for information retrieval sysd5].
However, as far as we know, there is no benchmarkiging a validation framework to query personafian
algorithms. A benchmark for query personalizatiblmidd also manage different users and their prates
Specifically, they should provide a large databasset of user profiles and user queries as wehe@aseference
results associated to each profile and querythey should provide collections of triplets {(prefi query)>
results}.

Our dataset is derived from two public databases,MovieLens [1] and IMDb [2]. Both databases de#h
data about movies. The IMDb database containsimicinmation about films, actors, directors, theggle where
they are produced, their budgets, their categaiasthe average rank given by the users who hadated
them. IMDDb describes more than 850.000 moviesatbment we have extracted its data (October 200&).
MovielLens database contains very few informatioouatiilms but provides a huge amount of evaluatigiven
by users who have seen these films. MovieLens gesva dataset composed of more than 1 million atiahs

! This research was partially supported by the FreMutistry of Research and New Technologies underARI program
devoted to Data Masses (ACI-MD), project #MD-33.
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given by 6.040 users on 3.883 films. The two datebaare complementary as they almost target the sam
movies (actually the set of films referred in Mdwéms is a subset of those referred in IMDb). Theénma
advantage of using these databases is that theydpra large volume of data, which is freely avalgaat
Internet. In addition, cinema data is very easyrtderstand, use and analyze. However, the joind®mithe two
databases is not easy to perform as there is moivarsal identifier for the contained movies. Tmy common
data is the titles of the movies but, unfortungtehey suffer from many problems such as abbrenati
translations into different languages and, gengrédick of writing standardization. Locally, eachtabase has
also many dirty data which needs to be cleanedamdogenized. Finally, the two databases, in pdaicu
IMDb, are semi-structured databases; their loadingp a relational database necessitates several
transformations. Consequently, using the two daadaeeds a substantial effort which we have dgjnas[this
kind of benchmark is not only useful for our evaioa but can benefit to a wide database communiyking

on query personalization.

This report describes the procedure followed falding the reference data set from IMDb and Movietelata.
Section 2 presents and overview of the approachaandtivating example. Section 3 presents the desfighe
reference data set; specifically, it describes ghecedures for generating user profiles based oniéllens
users’ ratings, for generating a set of queries tM®b data, and for obtaining the reference residr each
pair (query, profile). Auxiliary routines and stgea issues are also discussed. Section 4 descritees t
construction of the reference data set, discusgargmeterization and execution of the generatiatqufures
and presenting results and statistics. Finallyti8ed& concludes and presents future steps in dodeomplete
the benchmark for query personalization.

2. Overview of the approach

In order to motivate the need of a reference dataconsider the user query of Figure 1, askingaftiion
movies posterior to 2000 here is a large set of movies that satisfy queitgria. However, if we consider that
user prefers French movies played by Jean Renorethdt size reduces considerably by delivering enor
pertinent results. Personalization algorithms take account the user profile and reformulate therwguery by
including additional filtering criteria.

However, the results delivered by the personabratilgorithm may exclude pertinent results andudel non-
pertinent results. Knowing the set of movies tihat iser effectively prefers, i.e. the set of resthiat are really
pertinent, we can compare it with the results psegoby the personalization algorithm and quantighyi

evaluate the behavior of the algorithm.

Results with
personalization

Action movies
posterior to 2000

U e
' *“““'“1“, I |H?|“ﬂt&:.l

,l(IWIN\VIIWNIW |
1] e

User Results without Results preferred
profile personalization by the user

Country=France
Actor=Jean Reno

Figure 1 — Example of query personalization and coparison of results
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In the general case, we consider a certain datalvestence, a user query;,Qa user profile Pand a
personalization algorithm AFigure 2 illustrates the query results obtainétth @nd without personalization and
their comparison with reference results. Specifjcal

— The whole rectangle (grey zone) represents theespisolutions to Qi.e. each point represents a tuple
in the query domain;

- R (outer yellow oval) represents the set of resoft€); obtained using the database query interface,

without considering user profile;

- Ry (inner red oval) represents the set of result®;dhat are considered as pertinent by the user gavin

profile B. Note that Ris a subset of R

- R’k (inner green oval) represents the set of resail3;g which corresponds to query @nriched with
profile B by algorithm A. As personalization algorithms add restrictiondgrates to queries, ’is also
a subset of R

Figure 2 — Comparison of personalized results witheference results

The perfect personalization algorithm should reduatth pertinent results and exclude all non-pentirresults. In
other words, Rand Rijx should coincide. In practice, some pertinent tesarle discarded (R- R’j) and some
non-pertinent results are returned j(R- R;). Precision and recall measures indicate suchatlems from the
reference result.

In order to provide a test platform for persondl@maalgorithms, we need to build: a set of usefif@s, a set of
queries and the reference results for each paar{gprofile).

In order to generate user profiles, we use moviaga provided by MovieLens. In fact, instead dfiag certain
users to manually build their profiles and classifyery results according to their pertinence, weseemovie
ratings already expressed by real users. Spedyficahch tuple of the |_UserRatings table of theegnated
database (illustrated in Figure 3) corresponds teser evaluation, registering the user identiftte movie
identifier, the rating (in a 1-5 star scale) andiraestamp (unused). See [4] for details on theaekion of
MovielLens data and the feeding of the |_UserRattabte.

B8 |_UserRatings : Table

Userld Mavield Rating Timestamp | »

. 1 2918 4 978302124
] 1 3105 8 978301713
. 1 3114 4 973302174
. 1 3186 4 9753000139
] 1 3408 4 978300275
. 2 21 1 978299833
] 2 95 2 975300143
. 2 110 5 978298625
] 2 163 4 9752995809
. 2 165 &) 973300002 +
Enr: (4] « [ 1 [ J(»1](mk] sur 1000194

Figure 3 — Part of the instance of the |_UserRatimgtable
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User profiles are generated by joining the |_Usériga table with other tables of the integratecatiate (which
describe movie features) and extracting the commeatures of the movies with higher evaluation. Ehes
common features constitute the user profile. Tallescribing movie features were extracted from IMDb
database. See [4] for details on the extractidiv@fb data and their integration with MovieLens data

Actually, we partition the |_UserRatings tablewotsubsets:
— Training set from which user profile is generated, and

— Test setwhich is proposed as source database for penfigrmgueries and measuring personalization
results.

This partitioning assures that the obtained measune not biased. Furthermore, considering differen
partitioning strategies we can obtain more pregisasures.

Figure 4 illustrates the partitioning of the sethubvies evaluated by user j in training and tes, d@ghlighting
the set of preferred movies. User profile is exttddrom the preferred portion of the training set.

training set test set

Figure 4 — Extraction of user profiles from the prderred training set

In order to define user queries, we consider asespé solutions, some of the movies that the ussrdiready
evaluated (those of the test set), and we genepagégies asking for movies that satisfy differenitecia

(predicates on movie features obtained from IMDI).this end, we join the |_UserRatings table witime

tables describing movie features and we add sdieeirig conditions on such features. Both, jointables and
filtering conditions are randomly generated.

As we know the rating of each movie, we can edsilyd the set of reference results, i.e. those s the
query result that have a good rating. In other wpttle grey zone of Figure 2 consists of the tuplethe
training set of a given user, the yellow zone cstssof the tuples that satisfy a certain query tedred zone
consists of the subset of tuples that have a gakixly

Next section describes the mechanisms for gengratiar profiles, user queries and reference results

3. Design of the reference database

The reference database consists in a set of uséifepr a set of user queries and the corresponttjogd”
results for each couple (profile, query). In théxtion we present the design of the reference dagh.e. we
describe the procedures for generating user psoéited user queries, the procedures for calculagference
results and the database structures for storingprséles, user queries and reference resultss $action only
describes the design of such procedures; the gatfithe appropriate parameters and the obtainsdtseare
presented in next section.

3.1.Generation of user profiles

User profiles are sets of predicates that statepreéerences on movie features. Profile predichte® the form
feature=value wherevalue ranges in the domain of the moveature For example, a certain user may prefer
movies spoken in Frendr action movieswhich is expressed by the predicatesnguage = FrenchGenre =
Action

In order to extract a user profile from a set afrugvaluations, we look for common features of éheluated
movies, for example, if most of the movies the Uses assigned a great rating are filmed in Franeegeduce
that the user preferaovies filmed in Frangeand we propose the predicamcationCountry=France
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In this section we describe the generation of gelaset of predicates. Query personalization algmst may
choose among the generated predicates and bufitetif user profiles. To this end, we associateeghtto
each extracted predicate, which represents theepixge of the evaluated films that satisfy the ioeed.
Weights allow conforming more or less restrictiveeuprofiles by choosing the predicates with higheights
or accepting predicates with lower weights.

Weighted predicates have the forirakie.attribute operator value (weightywhere:table andattribute refer to
an attribute of a table of the integrated schereefencing a movie featurejalueis an element of the attribute
domain, operator 00 {=,<,<,>>} and weight represents the percentage of the evaluated fitrat datisfy the
predicate.

Some examples of weighted predicates are:

- |_MovieLanguages.language = English (80)

I_Countries.continent = Europe (25)

I_MovieGenres.genre = Comedy (40)
I_MovieYears.yeae 2000 (90)
I_MovieBusiness.budgetusd10.000.000 (60)

These examples can be interpretedi@eng the films the user has evaluated, 80% arkespm English, 25%
have been filmed in Europe, 40% are comedies, 9% pasterior to year 2000 and 60% have reportedenor
than 10 million dollars

The generation of predicates consists of three staijps:
1) Partitioning user evaluations in order to deterntraging, test and preferred sets
2) Extracting predicates for the evaluations on thefegured training set
3) Computing weights for the extracted predicatesr(iglating predicates with low weights)

The following sub-sections describe each step:

3.1.1.Partitioning of user evaluations

In order to partition user evaluations, we defingetiof conditions (training, test and preferredditons) that
allow delimiting the training, test and preferreztss We test different partitioning strategies, diéferent ways
of partitioning user evaluations.

Training conditions have the forattribute < value whereattribute is a numeric attribute of the I_UserRatings
table and value is a value of the attribute domiairarder to define conditions, we added five htites (named
C1, C2, C3, C4 and C5) to the |_UserRatings tadilleof them taking random values between 0 ande&t T
conditions are the negations of training conditjores they have the formttribute > value Preferred conditions
have the form_UserRatings.rating> valug wherevalueis a number between 1 and 5.

Training, test and preferred sets are definede@ss/on the |_UserRatings table according to theaeditions:

- TrainingSet:
SELECT * FROM |_UserRatings WHERE TrainingConditio n;

- TestSet:
SELECT * FROM |_UserRatings WHERE TestCondition;

- PreferredSet:
SELECT * FROM |_UserRatings WHERE PreferredConditi on;

Preferred training and preferred test sets areeeéfas conjunction of the corresponding conditions:

— PreferredTrainingSet:

SELECT * FROM |_UserRatings WHERE TrainingConditio n AND PreferredCondition;
- PreferredTestSet:
SELECT * FROM |_UserRatings WHERE TestCondition AN D PreferredCondition;

Additional parameters are used in the generatiqredicates. They allow generating meaningful pratis, i.e.
discarding predicates having a small weight (Mingtithreshold) and predicates appearing in too few
evaluations (MinEval threshold).
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The Ref_strategiesable encloses all these parameters (see Tabkath tuple of this table corresponds to a
different strategy. A strategy id allows identifgistrategies.

3.1.2.Extraction of predicates

We generate different types of predicates, eachconesponding to a movie feature (e.g. languagentey,
actor or genre). In order to generate predicatea fyiven feature, we join user evaluations with tétble storing
such feature and we count the movies that corresporeach feature value. For example, if we comside
languagefeature, we count how many movies correspond toliEflngSpanish, etc. We parameterized the
features to look for in the Ref_PredicateTypesadbte Table 1).

We used two algorithms for generating predicatdschvconsider equality and inequality of valuegpesgively.
The former computes the number of films ‘havingeatain feature value’ and the latter computes tmaber of
films ‘having more than a certain feature valueheTapproach can be extended with other predicdtaeting
methods, for example, clustering algorithms. Bdgodthms are implemented as PL-SQL procedures; e
sketched as follows:

- Ref_ExtractEqualityPredThis procedure computes the feature values d#sgrievaluated movies and
counts the number of evaluations correspondingti éeature value. This is done for each user aod e
strategy, storing the computed predicates in a teatpable (Ref_Aux2, described later in Table 1).

- Ref_ExtractinequalityPredrhis procedure computes the feature values dgsgrevaluated movies and
counts the number of evaluations correspondingeatgr values than each feature value. This is ime
each user and each strategy, also storing the dechpredicates in the temporal table (Ref_Aux2).

Both algorithms discard predicates having a smafipsrt, i.e. being present in few tuples. The MiaEv
parameter of the Ref_Strategies table set suchttble.

An additional procedure is used for discarding p&®s corresponding to Null or dummy values (e.g.
AttributeValue="_unknown’):

— Ref_DiscardDummyPred This procedure eliminates (from the Ref Aux2 éblthe predicates
corresponding to Null or dummy values.

The implementation of these procedures is desciib@snex 1.

3.1.3.Computation of predicate weights

In order to compute predicate weights, we divideribmber of user evaluations corresponding to pestiicate
(e.g. the number of evaluated movies havangguage="English) by the total of user evaluations. The former
value is registered in the Ref_Aux2 table, theelatalue has to be computed. We propose 2 PL-SQtepures
for computing the total of user evaluations andwaling weights respectively:

- Ref_CountEvaluationsThis procedure computes the number of evaluatioribe preferred training set
for each user and each strategy. It stocks the atedpesults in a temporal table (Ref_Aux1, desctib
later in Table 1).

- Ref_ComputePredWeightShis procedure computes predicate weights. Blgidadivides the number
of evaluations corresponding to each predicatesélstored in Ref_Aux2) by the total of evaluatiofs
the corresponding user and strategy (those storeRef_Aux1). The predicates having low weight
(according to the MinWeight parameter of the Refatggies table) are discarded. The generated
predicates are stored in the Ref_Predicates tableh is described in next sub-section.

The PL-SQL code of these procedures is listed ineXnl.

3.1.4.Storage issues
Table 1 describes the tables used in the generatipredicates.

Generation parameters are stored in the Ref_Steategd Ref PredicateTypes tables. They storetipaitig
strategies and predicate types respectively. A (igef_GenerationParameters) computes the Cartpsiahuct
of strategies and predicate types, i.e. it indikate combinations of parameters for generatingraticate
types for all strategies.
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CREATE OR REPLACE VIEW Ref_GenerationParameters AS

SELECT S.strategyid, S.minweight, S.minrating, S.m
S.trainingcondition, P.execid, P.lookupview, P.att
P.function, P.paraml, P.param2, P.param3

FROM Ref_Strategies S, Ref_PredicateTypes P;

ineval,
ributename,

The temporal tables Ref_Aux1 and Ref_Aux2 storertbhmber of evaluations per user and strategy aed th
generated predicates per user and strategy regggcBoth tables are used for computing predigaeghts and
eliminating the predicates having low weights. Thenaining predicates (and their weights) are stanetthe

Ref Predicates table.

Table

Attributes

Constraints

Ref_Strategies
Description of
partitioning strategies

Strategyld: Numeric(2)

TrainingCondition: String(50)
TestCondition: String(50)
PreferredCondition: String(10)

MinRating: Numeric(1); the threshold of th
preferred condition

MinWeight: Numeric(5,3)

MinEval: Numeric(5)

Primary key: Strategyld

Not null: Strategyld, MinWeight,
MinRating, MinEval,

e TrainingCondition,

TestCondition,

PreferredCondition

Ref_PredicateTypes
Description of
predicate types

PTypeld: Numeric(3)

LookupView: String(40); an auxiliary view
that relates movies with predicate feature
TableName: String(40); the table that stor
the feature

AttributeName: String(30); the attribute tha
stores the feature value

Function: String(20); the algorithm to be

eS

1brimary key: PTypeld
Not null: PTypeld, LookupView,
TableName, AttributeName,

used for generating predicates of this type
Param1l: String(40); extra parameter for s
function

Param2: String(40); extra parameter for suich

function
Param3: String(40); extra parameter for s
function

ch Function

ch

Ref_Auxl
Temporal table used fq
storing the number
evaluations of each
user for each strategy
(in the preferred
training set)

Strategyld: Numeric(2)

Userld: Numeric(4)

MovieCount: Numeric (5); the number of
evaluated movies

Primary key: Strategyld, Userld
Not null: Strategyld, Userld,
MovieCount

Ref Aux2

storing predicates for
each user and each
strategy (in the
preferred training set)

Temporal table used for

Strategyld: Numeric(2)

PTypeld: Numeric(3)

Userld: Numeric(4)

AttributeValue: String(256)

Operator: String(5)

MovieCount: Numeric (5); the number of
evaluated movies satisfying the predicate

Primary key: Strategyld, PTypeld
Userld, AttributeValue,
Operator

Not null: Strategyld, PTypeld,
Userld, AttributeValue,
Operator, MovieCount

Index: Strategyld, Userld

Ref_Predicates

Generated predicates |
per user and strategy |

Strategyld: Numeric(2)
PTypeld: Numeric(3)
Userld: Numeric(4)
TableName: String(40)
AttributeName: String(30)
AttributeValue: String(256)
Operator: String(5)

Primary key: Strategyld, PTypeld
Userld, AttributeValue,
Operator

Not null: Strategyld, PTypeld,
Userld, TableName,
AttributeName, AttributeValue,
Operator, Weight

Weight: Numeric

Index: Strategyld, Userld

Table 1 — Tables used for the generation of profilpredicates
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3.2.Generation of queries

In order to generate a large set of queries, wega as follows:
— We depart from the query: SELECTUserRatings.movieid FROM |_UserRatings
- We randomly generate a set of predicates and wéhedd in the WHERE clause
— We add all tables referenced in predicates to B@®M clause

- We complete the WHERE clause with the necessarygoédicates for relating all tables of the FROM
clause. We eventually add new tables to the FRGMsd if they are necessaries for joining otheetabl

As an example, consider the predicates of FiguréANEmadd them to the WHERE clause of the queryuiig
5b, in green and italics), and we add predicateesafl_MovieLanguages, |_Countries and |_MovieGsjte

the FROM clause (Figure 5b, in bleu and bold). Fégbd shows a portion of the database schema oorgai
predicate tables. Note that |_MovieLanguages aimblieGenres join with I_UserRatings by movieid, ity

have no common attributes for joining with |_Coigdr The last join is carried out using the |_M@eintries

table. The added tables and predicates are shofigume 5c (in red and italics).

(@) ()
|_MovieLanguages.language = English SELECT |_UserRatings.movieid
|_Countries.continent = Europe FROM |_UserRatings, |_MovieLanguages, |_Countries,
I_MovieGenres.genre = Comedy |_MovieGenres| MovieCountries
(b) WHERE I_MovielLanguages.language = ‘English’
SELECT |_UserRatings.movieid AND I_Countries.continent = ‘Europe’
FROM |_UserRatingd, MovieLanguages, AND |I_MovieGenres.genre = ‘Comedy’
|_Countries, |_MovieGenres AND |_MovieGenres.movieid = |_Movies.movieid
WHERE |_MovieLanguages.language = ‘English’ AND  |_MovieLanguages.movieid = I_Movies.movie|d
AND |_Countries.continent = ‘Europe’ AND |_MovieCountries.movieid = I_Movies.movieid
AND |I_MovieGenres.genre = ‘Comedy’ AND |_Countries.country = |_MovieCountries.countfy
(d)
|_MovieGenres
Movield
Movield Genre
|_MovieCountries /
- Movield -
|_Countries Country I_UserRatings I_MovieLanguages
Country Movield Userld Movield
Continent Country ovie MLleld Movield | |Language
Rating Languagelnfo
Timestamp

Figure 5 — Example of query generation

Starting from a set of predicates, the constructib8QL queries is quite straight-forward. The paghow to
generate the predicates. In order to carry out gacteration, we follow the same approach used daerting
profile predicates, i.e. we extract common attetwalues describing the evaluated movies of eagh us

However, the generation process has some impaitHatences: (i) we consider all user evaluatioms, only

those having high ratings, (ii) we also extractdizates having low weights, and (iii) we randomhoose a
small number of predicates. These differences aflemerating queries that considerably differentieden user
profiles. Concretely, while user profiles contalhrégh-weight predicates, queries contain few @améy chosen
predicates, which rarely represent user preferernnesddition, movie features that are irrelevamtdsers may
be chosen for query predicates. These three diffesealso allow the generation of typical querigtsrbturning

result sets of varied sizes. Specifically, the ctegda of a small number of predicates (from 1 toadpids

generating monster queries that returns no dataveMer, the randomness of the selection allows oiigi
result sets of different sizes, ranging from almeaspty sets when queries have several restrictiedigates (of
low weight) to almost all data when queries hawe f@n-restrictive predicates (of high weight).

Sub-section 3.2.1 describes the generation of qoeglicates and Sub-section 3.2.2 describes thetraotion
of SQL queries.
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3.2.1.Extraction of query predicates

The extraction of query predicates follows the sameedures explained for extracting profile pratks (see
Sub-section 3.1). Actually, we define a speciateyy (with Strategyld=0) that defines the preféiraining set
as containing all user evaluations. Then, we geaenae query per user.

Among the generated predicates, we randomly sealerhall number of predicates (between 1 and 5% iEhi
carried out by 4 algorithms, implemented as PL-$@icedures:

Ref_SetQueryPredNumbeérhis procedure randomly set a desired numberedipates (between 1 and
5) for each query. It stocks the computed resoles temporal table (Ref_AuxQ1).

Ref_SetPredRandomWeigfihis procedure computes candidate predicatesdoh query and assigns a
random weight to each predicate. Candidate prezicate taken from the Ref Predicates table, setpcti
the strategy 0. The random weights will be useer lfdr selecting a small number of predicates pery)
(according to the desired number of predicateedtor the Ref_AuxQ1 table). The procedure stocks th
generated predicates in a temporal table (Ref_A)xQ2

Ref_SelectQueryPred@his procedure selects, among the candidate gatedi of each query (stored in the

Ref_AuxQ2 table), the ones having higher randongtteiThe number of predicates to select is taken
from the Ref_AuxQ1 table. A sub-procedure (Ref &€eeryPred_aux) is used for carrying out the
selection for each query. The selected predicatestared in a temporal table (Ref_AuxQ3).

Ref_DeleteQueryConflictivePredihis procedure eliminates the conflictive pretisaof the Ref AuxQ3
table, i.e. when several predicates reference ae sattribute (e.g.language="English’ and
language='Spanisl), the one having a higher random weight is kejat.tfis end, the procedure first
computes the maximum random weight for each ateiljwhich are stored in the Ref_AuxQ4 temporal
table) and then, proceeds to the selection. Thairdd predicates are stored in the Ref_QueryPredica
table.

The PL-SQL code of these procedures is listed ineXr2. The table that stores the generated predieat well
as the temporal tables used in the generationeseritbed in Table 2.

Table Attributes Constraints

Ref_AuxQl1Temporal table
used for storing the numbe
of predicates to select per

query

171

Queryld: Numeric(4)
PredNumber: Numeric(2); the number @
predicates to select

tPrimary key: Queryld
Not null: Queryld, PredNumber

Ref_AuxQ2

Temporal table used for
storing candidate
predicates per query (with
random weights)

PTypeld : Numeric (3)

Queryld: Numeric (4)

TableName: String(40)

AttributeName: String(30)
AttributeValue: String(256)

Operator: String(5)

Weight: Numeric

Rnd : Numeric; random weight used for
random selection

Primary key: PTypeld, Queryld
AttributeValue, Operator

Not null: PTypeld, Queryld,
TableName, AttributeName,
AttributeValue, Operator,
Weight, Rnd

Index: Queryld

Ref AuxQ3

Temporal table used for
storing randomly selected
predicates per query

PTypeld : Numeric (3)

Queryld: Numeric (4)

TableName: String(40)

AttributeName: String(30)
AttributeValue: String(256)

Operator: String(5)

Weight: Numeric

Rnd : Numeric; random weight used for

random selection

Primary key: PTypeld, Queryld
AttributeValue, Operator

Not null: PTypeld, Queryld,
TableName, AttributeName,
AttributeValue, Operator,
Weight, Rnd

Index: Queryld
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Ref AuxQ4

Temporal table used for
storing the maximum -
random weight for
conflictive predicates (those-
referencing a same
attribute)

PTypeld : Numeric (3)
Queryld: Numeric (4)
Rnd : Numeric; random weight

Primary key: PTypeld, Queryld
Not null: PTypeld, Queryld, Rnd

- PTypeld : Numeric (3)
. - Queryld: Numeric (4)
el pe |- TableName: Sng(aD
uer P PETI_ AttributeName: String(30)
query - AttributeValue: String(256)
- Operator: String(5)

Primary key: PTypeld, Queryld

Not null: PTypeld, Queryld,
TableName, AttributeName,
AttributeValue, Operator

Table 2 — Tables used for the generation of queryredicates

3.2.2.Construction of SQL queries

As previously explained, we depart from a quergaiithg movie ids (SELECT |_UserRatings.movieid FROM
I_UserRatings), we add query predicates to the WEHERuUse and we add predicate tables to the FR@Nsel

In addition, we add extra conditions to the WHERM jin order to join predicate tables to the |_URagings
table, possibly adding transitive tables to the MR€ause.

Each type of predicate determines the join conatitiand extra tables necessaries for the join, wénielderived
from the database schema. They are stored in 8stdBlef PTypeJoinConditions and Ref_PTypeJoinTgbles
which are described in Table 3.

The procedures for generating SQL queries fromethiables are implemented in Java. The obtainedeguare
stored in the Ref_Queries table, also describ&8abie 3.

Constraints
Primary key: PTypeld,
JoinCondition
Not null: PTypeld, TableName,
AttributeName, JoinCondition

Table Attributes
PTypeld : Numeric (3)
LookupView: String(40)
AttributeName: String(30)
- JoinCondition: String(40)

PTypeld : Numeric (3)

Ref_PTypeJoinConditions |
Generated predicates per |

query

Ref_PTypeJoinTables

Generated predicates per |

LookupView: String(40)
AttributeName: String(30)

Primary key: PTypeld, JoinTable
Not null: PTypeld, TableName,

query _ JoinTable: String(40) AttributeName, JoinTable
- Queryld: Numeric (4)
Ref_Queries - QueryText: String(2000) Primary key: Queryld

Reference queries - RelationsNumber: Numeric(2); the

number of tables in the where clause

Not null: Queryld, QueryText

Table 3 — Tables used in the generation of SQL quies

3.3.Computation of Reference Results

Given a query Q, a user U and a strategy S, they@®uld be executed on the utest setorresponding to the
strategy. The test set is computed as a view anaewsguations, as follows:

— TestSetSELECT * FROM I_UserRatings WHERE TestCondition AND userid=U

Replacing the |_UserRatings table by this viewregponds to add the test condition and the comddio user
id to query expression. For example, the query

SELECT |_UserRatings.movieid

FROM |_UserRatings, |_MovieCountries

WHERE |_UserRatings.movieid = |_MovieCountries.movi eid
AND |_MovieCountries.country = ‘France’

10
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is unfolded to:

SELECT |_UserRatings.movieid

FROM |_UserRatings, |_MovieCountries

WHERE |_UserRatings.movieid = |_MovieCountries.movi eid
AND |_MovieCountries.country = ‘France’

AND TestCondition AND userid=U;

The reference results are computed in the samealsyadding the preferred condition to the query.

Next section describes the execution of the prasedand the analysis of the obtained results.

4. Construction of the Reference Database

In this section we describe the results and sizgigibtained from the execution of the previousisatibed
procedures, i.e. those for generating user proéles$ user queries. We firstly describe the settihgtrategies
and the selection of relevant movie features. Thenpresent the number of extracted predicatedyzathby
several factors and the number of generated quesiss analyzed by several factors. Finally, weseng
statistics on result sizes for pairs <query, pedfil

4.1. Setting of strategy parameters

As previously argued, we aim at generating differpartitioning strategies in order to obtain unbihs
experimental results.

In order to set appropriate partitioning sizes es&ted different parameters. Firstly, five randoirikaites were
added to the |_UserRatings table (namely, C1, ,@ and C5), each one ramdomly filled with aregetr
between 0 and 9. Therefore, training conditionsewexpressed in the form Ci < N<li <5, 0< N < 9. We
defined two training sizes, with 50% of tuples.(i3@ < 5) and 30% of tuples (i.e. Ci < 3) respesiyv Secondly,
we defined three preferred set sizes, with rating, rating> 4 and rating= 5 respectively. This leads to 6
combinations of parameters.

Table 4 shows the average number of ratings irpth&erred training set for each type of strategy @able 5
shows the average number of ratings in the prefdregning set per user and type of strategy.

Training size[ All ratingg Rating= 3 [ Rating> 4 | Rating>5 |
100 % 1.000.194 836.464 575.27Q 226.307
50 % 500.217 418.294 287.788 113.189
30 % 299.825 250.627 172.594 67.804

Table 4 — Average number of ratings in the preferrd training set per type of strategy

Training size| All ratings Rating= 3 | Rating> 4 | Rating> 5

100 % 166 138 95 37
50 % 83 69 48 19
30 % 50 42 29 11

Table 5 —Average number of ratings in the preferredraining set per user and type of strategy

Note that the number of ratings in the preferraghing set is too small when considering ratng. So, we did
not consider such setting. We kept a total of 2dtegies, which are shown in Table 6; strategyued later for
query generation; the remaining strategies areqehbl 5, for ki< 5.

Strategy id| Training condition Test condition Prede condition
0 Ci<10 Rating= 0
1-5 Ci<5 Ci=>5 Rating= 3
6-10 Ci<5b Ci=5 Rating= 4
11-15 Ci<3 Ci=>3 Rating= 3
16-20 Ci<3 Ci>3 Rating= 4

Table 6 — Parameters of strategies

11
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Further parameters are the minimum weight (MinWgigimd the minimum number of evaluations (MinEval)
were set to 10 and 5 respectively for all straegiWe preferred generating a great number of pageticeven

having low weights because they can be filteredetféer.

4.2. Set of predicate types

We considered a set of 35 attributes containingveeit movie features, which are listed in Tabl&@me of
them were implemented (those needing an equalitinequality comparison function), the remaining ®ne

(which are shadowed) were kept as future work.

NCAtt | Table Attribute Comparison function
2 |_MovieGenres genre equality

3 I_MovieCountries country equality

4 IV_MovieCountries continent equality

5 |_MovieYears year equality

6 IV_MovieYears decade equality

7 |_MovieYears year clustering

8 |_MovieRatings rating equality

9 I_MovieRatings rating inequality
10 |_MovieRatings votes inequality
11 |_MovieKeywords keyword equality

12 |_MovieLanguages language equality

13 I_MovieProductionCompanies companyname | equality

14 IV_MovieProductionCompanie§  country equality

15 IV_MovieProductionCompanie§  continent equality

16 |_MovieProductionCompanies | companyname reconciliation
17 I_MovieColors color equality

18 |_MovieSounds soundmix equality

19 |_MovieSounds soundmix reconciliation
20 |_MovieBusiness budgetusd inequality
21 |_MovieBusiness revenueusd inequality
22 |_MovielLocations zone equality

23 IV_MovieLocations country equality

24 IV_MovielLocations continent equality

25 |_MovieRunningTimes country equality

26 IV_MovieRunningTimes continent equality

27 I_MovieRunningTimes durationinterval quelity

28 I_MovieRunningTimes duration clustering

29 |_MovieDirectors director equality

30 |_MovieWriters writer equality

31 I_MovieProducers producer equality

32 I_MovieCostumeDesigners costumedesigner equality

33 |_MovieProductionDesigners productiondesigneequality

34 I_MovieActresses actress equality

35 |_MovieActors actor equality

36 |_MovieLinks linktype equality

Table 7 — Candidate attributes describing movie feares

4.3. Obtained profile predicates

Having defined strategy parameters and types diigaes, we proceeded to execute the profile géonera
procedures described in Sub-section 3.1. We oltaBné79.207 predicates for all users and all gjfete The
following figures analyze the number of obtaineddicates per strategy, weight, user and attribute.

12
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Figure 6 shows the number of predicates extraateceéch strategy. As expected, the number of paskc
decreases for more restrictive strategies.

Number of predicates by strategy

600000

500000 +—

400000 -

300000 +— —

200000 +— —

Nombre de prédicats

100000 -

0

1-5 6-10 11-15 16-20

Stratégies

Figure 6 — Average number of predicates per type dftrategy

Figure 7 also considers predicate weights; it shiesnumber of predicates having a weight greateqoal to
a given value. Note that the distribution is simflar all types of strategies.

Cumulative number of predicates by weights
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Figure 7 — Cumulative number of predicates by weigts

Figures 8, 9, 10 and 11 incorporate a new dimengion number of users having a certain profile .sEg
profile size we mean the number of predicates gaedrfor the user. Figure 8 shows that the numliber o
predicates generated for each user varies larfyely, 1 to more than 160. As special cases, we thatiethere is
nearly a hundred users having a small number afigaites (close to 20) and nearly a hundred usetiadalose

to 80 predicates. This distribution is very differevhen only considering weights greater or eqo&Q (Figure

9) or 50 (Figure 10). In the former, most usersehprofile sizes between 20 and 30 predicates, mtitki latter,
most users have profile sizes between 15 and 2figates. Figure 11 illustrates the case of predivagights
greater or equal to 90. In this case, all useretr@afew number of predicates. Note that in all fégu the
distributions are quite independent of the typstaitegy.
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Number of users by number of predicates (w=10)
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Figure 8 — Number of users having a certain profilsize (with predicate weight10)

Number of users by number of predicates (w=30)
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Figure 9 — Number of users having a certain profilsize (with predicate weight30)

Number of users by number of predicates (w=50)
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Figure 10 — Number of users having a certain profé size (with predicate weigh£50)
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Number of users by number of predicates (w=90)
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Figure 11 — Number of users having a certain profd size (with predicate weigh£90)

Finally, Figure 12 shows the number of predicates fype of predicate, highlighting the most gerextat
predicates concerns keywords (type 11), IMDb glalsihg (type 9), genre (type 1) and link type &yR6).
Conversely, there are too few predicates conceminging year (type 8), and casting (types 29 fo 35
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Figure 12 — Number of predicates per type (for alstrategies)

4.4. Obtained queries

After generating user profiles, we proceeded taceteethe query generation procedures. We firstiyegeted
query predicates, using the same procedures thamdfile generation, but fixing the strategy Odsjal strategy
that extracts predicates from the whole set ohgal. Therefore, we obtained 6040 queries, oneuper. We
obtained an initial set of 622.061 predicates fbgaeries, from which we randomly selected 18.142 kept
15.996 predicates after eliminating contradictomg® The following figures show the number of pecatis of
each query at each generation stage.

Figure 13 shows the number of queries having aicerumber of generated predicates. Note that mosties
have between 80 and 130 predicates but there are gaeries with an enormous number of predicateall |
cases, the random selection of a small numberedigates assures that the query does not représenser
profile.
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Histograme of queries by number of predicates
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Figure 13 — Number of queries having a certain numér of predicates (initial generation)

Figure 14 also shows the number of queries havingriain number of predicates, but after randoracsiein
and after elimination of contradictory predicat€se former is quite uniformly distributed but iretkatter, there
are less queries having 4 and 5 predicates (betlaegeontained more contradictory predicates).

Histograme of queries by number of predicates
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Figure 14 — Number of queries having a certain numér of predicates (  after random selection andil after elimination of
contradictory predicates)

After fixing query predicates, the algorithm presehin Sub-section 3.2.2 was executed in orderetteate
SQL queries. Finally, we added a special quenh witery id = 0, that has no predicates.

4.5. Execution of queries

After generating queries, we executed them overstheeral test sets (for all users and all strasggied we
measured the size of the obtained results. Theviollg figures illustrate this fact for one partiaubktrategy.

Figure 15 shows the number of queries having at le@ertain result size. By result size we meamtimber of
tuples returned by the query. We took two measuhesaverage of result sizes for all users, andrtagimum
result size for a user (the user for whom the quetyrns the most of results). Note that most gseréturns less
than 20 tuples in average but they return moreltsefar some users.
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Cumulative number of queries by result size (strate gy 11)
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Figure 15 — Number of queries having a certain redusize or greater

Figure 16 shows the number of users for whom weiobd at least a certain result size. We also teak
measures: the average of result sizes for all gsieand the maximum result size for a query (therygthat
returns the larger result for the user). Note thast users receive less than 20 tuples in avenaigith®y receive
more results for some queries.

Cumulative number of users by result size (strategy 11)
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Figure 16 — Number of users for whom we obtained eertain result size or greater

Result sizes are larger for strategies 1 to 10sndller for strategies 16 to 20, but distributiarisprevious
figures are conserved.

5. Conclusion

In this report we described the procedure folloi@dgenerating a reference data set for query petsation.
Specifically, we described the generation of usefiles, the generation of queries and the compmrtadf
reference results. We also executed those procedung showed statistics on the obtained profilelipages,
guery predicates and result sizes.

This reference data set is large enough to supperefinition of several personalization benchreasither by
limiting the number of predicates in each user ifgsfor by selecting subsets of users or queriedirgh
benchmark built over this reference data set isriteed in [3].
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As future work, we aim at considering communitiésusers having similar profiles and defining comrityn
profiles. The queries of the data set may be erecan the test set of a community (the union oftéis¢ sets of
all users in the community) obtaining queries Wétger result sizes. Additional tests may compheeresults
obtained with the user profile with the resultsadbéd with the community result.

6. References

[1] GroupLens Research: “movielens: helping you to fitide right movies”. Web site, ULR:
http://movielens.umn.edlast accessed on Jul{,2006.

[2] Intenet Movie Database, Inc.: “The Intenet Movietdbmse”, Web site, URLhttp://www.imdb.com/ last
accessed on July'92007.

[3] Kostadinov D. : “Personnalisation de I'informationne approche de gestion de profils et de refaatiar
de requétes”. PhD thesis, Université de Versa8lgist-Quentin en Yvelines, December 2007.

[4] Peralta, V.: “Extraction and Integration of Movigleand IMDb Data”. Technical Report, Laboratoire
PRiSM, Université de Versailles, Versailles, Frandy 2007.

[5] Text REtrival Conference (TREC). URhttp://trec.nist.gov/last accessed on September 2007.

[6] Transaction Processing Performance Council. URtp://www.tpc.org/ last accessed on September 2007.

18



Veroénika Peralta

7. Annexes

7.1.Annex 1 — Procedures for generating profile predicees

Ref_ProfileGeneration
CREATE OR REPLACE PROCEDURE Ref_ProfileGeneration

AS
BEGIN

DELETE from Ref_Aux1;
COMMIT;

DELETE from Ref_Aux2;
COMMIT;

DELETE from Ref_Predicates;
COMMIT;

Ref_ExtractEqualityPred;
Ref_ExtractinequalityPred;
Ref_DiscardDummyPred,;
Ref_CountEvaluations;
Ref_ComputePredWeights;

COMMIT;

END Ref_ProfileGeneration;
/
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Ref_ExtractEqualityPred
CREATE OR REPLACE PROCEDURE Ref_ExtractEqualityPred

AS
stmt VARCHAR2(5000);

parameters Ref _GenerationParameters%rowtype;
CURSOR cursor_parameters is
SELECT *
FROM Ref_GenerationParameters
WHEREunction = 'Equality’;
BEGIN

FOR parameters IN cursor_parameters LOOP

stmt:= 'INSERT INTO Ref_Aux2 (

SELECT ' || parameters.strategyid || '," ||
parameters.ptypeid ||,
U.userid,

T."|| parameters.attributename || ',

count(distinct U.movieid)

FROM |_USERRATINGS U, ' || parameters.lookupvie
WHERE T.movieid = U.movieid
AND  U.rating >=" || parameters.minrating || '
AND U." || parameters.trainingcondition || '
GROUP BY U.userid, T." || parameters.attributena
HAVING count(distinct U.movieid) >=" || paramet

)

EXECUTE IMMEDIATE stmt;

COMMIT;

END LOOP;

END Ref_ExtractEqualityPred;
/

20

wl'T
me ||
ers.mineval || '



Veroénika Peralta

Ref_ExtractinequalityPred
CREATE OR REPLACE PROCEDURE Ref_ExtractinequalityPr

AS
stmt VARCHAR2(5000);

parameters Ref _GenerationParameters%rowtype;

CURSOR cursor_parameters is
SELECT *
FROM Ref_GenerationParameters
WHEREunction = 'Inequality';

BEGIN
FOR parameters IN cursor_parameters LOOP

stmt:= 'INSERT INTO Ref_Aux2 (
SELECT ' || parameters.strategyid || '," ||
parameters.ptypeid ||,
U.userid,
P." || parameters.attributename || ',
>=,
count(distinct U.movieid)
FROM |_USERRATINGS U, ' || parameters.lookupvie
parameters.paraml || ' P
WHERE U.movieid = T.movieid
AND  T.'|| parameters.attributename || ' >=
P."|| parameters.attributename || '
AND U.rating >=" || parameters.minrating || '
AND U." || parameters.trainingcondition || *
GROUP BY U.userid, P." || parameters.attributena
HAVING count(distinct U.movieid) >=" || paramet
)
EXECUTE IMMEDIATE stmt;
COMMIT,;
END LOOP;

END Ref_ExtractinequalityPred;
/

Ref_DiscardDummyPred
CREATE OR REPLACE PROCEDURE Ref_DiscardDummyPred

AS
BEGIN

DELETE FROM Ref_Aux2
WHERE attributevalue = 'NULL";

DELETE FROM Ref_Aux2
WHERE attributevalue ='_unknown’;

DELETE FROM Ref_Aux2
WHERE attributevalue ='_multiple’;

COMMIT;

END Ref_DiscardDummyPred;
/
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Ref_CountEvaluations
CREATE OR REPLACE PROCEDURE Ref_CountEvaluations

AS
stmt varchar2(5000);

parameters Ref_Strategies%rowtype;

CURSOR cursor_parameters is
SELECT *
FROM Ref_Strategies;

BEGIN
FOR parameters IN cursor_parameters LOOP

stmt:= 'INSERT INTO Ref_Aux1 (
SELECT ' || parameters.strategyid || ',
U.userid,
count(*)
FROM |_UserRatings U
WHERE U.rating >=" || parameters.minrating ||
AND  U.'|| parameters.trainingcondition || '
GROUP BY U.userid
)
EXECUTE IMMEDIATE stmt;
COMMIT;
END LOOP;

END Ref_CountEvaluations;
/

Ref_ComputePredWeights
CREATE OR REPLACE PROCEDURE Ref_ComputePredWeights

AS
BEGIN

INSERT INTO Ref_Predicates (
SELECT X1.strategyid,

X2.ptypeid,

X1.userid,

A.tablename,

A.attributename,

to_char(X2.attributevalue),

X2.operator,

(X2.moviecount/X1.moviecount)*100
FROMRef_Aux2 X2, Ref_Auxl1 X1, Ref_PredicateTypes
WHERE X2.strategyid = X1.strategyid
AND  X2.userid = X1.userid
AND  X2.ptypeid = A.ptypeid
AND  Xl.strategyid = S.strategyid
AND (X2.moviecount/X1.moviecount)*100 >= S.minwei

);
COMMIT;

END Ref_ComputePredWeights;
/

22

A, Ref_Strategies S

ght



Veroénika Peralta

7.2.Annex 2 — Procedures for generating query predicate

Ref_QueryGeneration
CREATE OR REPLACE PROCEDURE Ref_QueryGeneration

AS
BEGIN

DELETE from Ref_AuxQ1;
COMMIT;

DELETE from Ref_AuxQ2;
COMMIT;

DELETE from Ref_AuxQ3;
COMMIT;

DELETE from Ref_AuxQ4;
COMMIT;

DELETE from Ref_QueryPredicates;
COMMIT;

Ref_SetQueryPredNumber;
Ref_SetPredRandomWeight;
Ref_SelectQueryPred;
Ref_DeleteQueryConflictivePred,;

COMMIT;

END Ref_QueryGeneration;
/
Ref_SetQueryPredNumber
CREATE OR REPLACE PROCEDURE Ref_SetQueryPredNumber

AS
BEGIN

random.rndinit();

INSERT INTO Ref_AuxQ1 (
SELECT U.userid, random.rndint(5)+1
FROM |_UserRatings U

GROUP BY U.userid

);
COMMIT;

END Ref_SetQueryPredNumber;
/
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Ref_SetPredRandomWeight

CREATE OR REPLACE PROCEDURE Ref_SetPredRandomWeight

AS
BEGIN

random.rndinit();

INSERT INTO Ref_AuxQ2 (
SELECT X.ptypeid,
X.userid,
X.tablename,
X.attributename,
X.attributevalue,
X.operator,
X.weight,
random.rndflt()
FROMRef_Predicates X
WHERE X.strategyid=0

);
COMMIT;

END Ref_SetPredRandomWeight;
/

Ref_SelectQueryPred
CREATE OR REPLACE PROCEDURE Ref_SelectQueryPred
AS
preds Test_RuleNumber%rowtype;
CURSOR cursor_preds is
SELECT *
FROMRef_AuxQ1;
BEGIN
FOR preds IN cursor_preds LOOP
Ref_SelectQueryPred_aux (preds.queryid, preds.pre
END LOOP;

END Ref_SelectQueryPred;
/
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Ref_SelectQueryPred_aux

CREATE OR REPLACE PROCEDURE Ref_SelectQueryPred_aux
query in NUMBER,
predcount in NUMBER)

AS
i NUMBER;
rules Ref_AuxQ2%rowtype;

CURSOR cursor_rules is
SELECT *
FROMRef_AuxQ2 T
WHERET.queryid = query
ORDER BY T.rnd DESC;

BEGIN
i:=0;
OPEN cursor_rules;
WHILE i < predcount LOOP

FETCH cursor_rules into
rules.ptypeid,
rules.queryid,
rules.tablename,
rules.attributename,

rules.attributevalue,

rules.operator,
rules.weight,
rules.rnd;

EXIT WHEN cursor_rules%notfound;

INSERT INTO Ref_AuxQ3 VALUES (
rules.ptypeid,
rules.queryid,
rules.tablename,
rules.attributename,

rules.attributevalue,

rules.operator,
rules.weight,
rules.rnd

)
i==i+1;

END LOOP;
CLOSE cursor_rules;

COMMIT;

END Ref_SelectQueryPred_aux;
/

(

25



Generation of a Reference Data Set for Query Paligation — Technical Report

Ref_DeleteQueryConflictivePred
CREATE OR REPLACE PROCEDURE Ref_DeleteQueryConflict ivePred

AS
BEGIN

INSERT INTO Ref_AuxQ4 (
SELECT ptypeid, queryid, max(rnd)
FROMRef_AuxQ3

GROUP BY ptypeid, queryid

)i

INSERT INTO Ref_QueryPredicates (

SELECT X.ptypeid, X.queryid, X.tablename, X.attri butename,
X.attributevalue, X.operator

FROMRef_AuxQ3 X, Ref_AuxQ4 Y

WHEREX.ptypeid = Y.ptypeid

AND  X.queryid = Y.queryid

AND  X.rnd =Y.rnd

)i

COMMIT;

END Ref_DeleteQueryConflictivePred;
/
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